Способы проверки датчика распредвала
Перед выполнением проверки датчика с помощью мультиметра или других электронных приборов необходимо проверить его механическую целостность. В частности, он устанавливается в корпус с уплотнительным кольцом, обеспечивающим его надежное крепление. Нужно проверить его состояние. Также будет нелишним проверить целостность корпуса датчика, наличие на нем трещин или других повреждений. Желательно проверить и задающий диск, не повреждены ли зубья, нет ли на корпусе датчика или поблизости от него металлической стружки.
В интернете можно найти информацию о том, что якобы ДПРВ можно выявить его работоспособность, просто проверив его магнитные свойства. В частности, к его торцу (рабочей чувствительной части) поднести маленькую металлическую деталь, которая должна «прилипнуть» к датчику. На самом деле это не так, и нерабочий ДПРВ может как обладать магнитными свойствами, так и не обладать ими. Соответственно, проверку необходимо выполнять другими методами.
Существует два основных способа проверки датчика положения распределительного вала — с помощью электронного мультиметра и с помощью осциллографа. Первый метод проще и быстрее, однако второй — более точный и дает больше диагностической информации.
Проверка датчика распредвала мультиметром
Для проверки ДПРВ необходим демонтаж. Сделать это несложно, нужно лишь отсоединить от него контактную группу проводов, и отвинтить крепежный болт. Также для проверки вам понадобится небольшой металлический предмет (из черного металла, чтобы он магнитился).
Схема подключения для проверки датчика фаз 21110-3706040
Схема подключения для проверки датчика фаз 21120-3706040
Алгоритм выполнения проверки датчика мультиметром следующий:
- Взять мультиметр и переключить его в режим измерения постоянного напряжения в диапазоне до 20 В (зависит от конкретной модели мультиметра).
- Отсоединить «фишку» от датчика, отщелкнув фиксатор.
- Демонтировать датчик из его посадочного места.
- На «фишке» датчика 21110-3706040 автомобиля ВАЗ (и на многих других) контакт «А» соответствует массе, контакт «С» — плюсовой провод, идет от реле управления, контакт «В» — сигнальный провод (средний). У фишки датчика 21120-3706040 контакт «А» соответствует массе, контакт «В» — плюсовой провод от реле управления, контакт «С» — сигнальный провод.
- Проверить наличие питания на фишках. Для этого нужно включить зажигание на автомобиле (но не запускать двигатель) и проделать это с помощью мультиметра. Если питания на фишках нет — значит, нужно искать причину. Это может быть неисправная проводка (повреждение изоляции, разрыв проводов), выход из строя управляющего реле, «глюк» электронной системы управления (ЭБУ).
- Далее нужно подсоединить датчики для проверки по приведенным на рисунке схемам.
- Подать на датчик напряжение 13,5±0,5В (хотя допускается и меньшее, например, 12…12,5 Вольта от аккумулятора).
- Если при подаче питания на датчик вольтметр фиксирует отсутствие напряжения на датчике, то это сигнализирует либо о поломке самого датчика, проверку можно завершить и готовиться к замене датчика на новый.
- Замерить напряжение между плюсовым и сигнальным контактом. Оно должно равняться не менее 90% от питающего напряжения (то есть, если значение питающего напряжения равно 12 Вольт, то напряжение на сигнальном контакте должно быть не менее 10,8 Вольт).
- Поднести к торцу датчика (его сигнальной части) приготовленный заранее металлический предмет. Повторно замерить напряжение на сигнальном контакте. Оно должно быть не более 0,4 Вольт. Убрать пластину — значение напряжения должно восстановиться до 90. 100% питающего. Если есть какие-либо отклонения в процессе проверки — значит, датчик вышел из строя и подлежит замене.
Проверка ДПРВ с помощью осциллографа
Электронный осциллограф помогает понять, как работает датчик положения распределительного вала, и выдает ли он импульсы вообще. Обычно пользуются так называемым электронным осциллографом, то есть, просто программой-симулятором, установленным на ноутбук или другое подобное устройство. Необходимо подключиться к датчику распредвала и снять с него осциллограмму. В идеале должна быть ровная диаграмма-расческа с одним выпадающим пиком, который соответствует прохождению рэпера через датчик. Если же осциллограмма имеет другую форму — нужна дополнительная проверка.
При диагностике осциллографом датчика распределительного вала автомобилей «Ниссан» (в частности, Nissan Almera) форма осциллограммы будет другой. Она не будет ровной, а в виде 3 импульсов, потом пробел, далее 4 импульсов — пробел, 2 импульсов — пробел и один импульс — пробел. Для двигателей этого автопроизводителя такая особенность является нормой.
Частые вопросы по автодиагностике ВАЗ 2112 через компьютер или смартфон
Ранние марки электронных блоков управления имеют только К-линию для внешних адаптеров. По это причине, для них применяется K-Line VAG. Аппарат поддерживает стандарты обмена данными ISO 9141-1, 9141-2, 14230, KWP2000. Подключение выполняется к диагностическому разъему машины. Позволяет считать коды неисправностей, проанализировать данные, очистить ПЗУ компьютера.
Модели двигателей ВАЗ 2121, оснащенные CAN протоколом, имеют сервисною колодку стандарта OBD2. Для коммутации используется 16-пиновый порт. Обмен пакетами данных осуществляется по двум линиям: Кан-верхняя, Кан-нижняя.
Подходящие адаптеры и кабели для диагностики
ЭБУ | Программы | Шина | Подходящий адаптер/кабель |
Бош M1.5.4 | АвтоВАЗ NEW ICD 1.2.0.1 Stevaz ChipExplorer Lite 1.5 Diagnostic Tool v1.31.2 | K-Line | K-Line VAG COM |
Январь 5.1.N | |||
Январь 7.2 | |||
Бош M7.9.7 | KWP-D KWP2000 | ||
Бош MP7.0 | ICD 1.2 Chip tuning 1.25 | ||
Январь 7.2+ (аппаратная ревизия) | Stevaz | CAN | ELM 327 * Сканматик 2 ДСТ-14Т и другие, адаптированные под CAN-шины ScanToolPro * |
М73 | ScanMaster v2.1 Rus OBDTool 1.2.60 | ||
VS5.1 | CTuning v.2.6 | K-Line | K-Line VAG COM ELM 327 |
* Для сканеров на ELM 327 рекомендована ревизия чипа 1.5.
Подходящие сканеры для диагностики автомобиля ВАЗ 2112
Полноценные профессиональные сканеры, отличаются от адаптером, тем что имеют встроенный дисплей, собственную внутреннюю диагностическую программу для чтения конфигураций ЭСУД.
ДСТ-14Т – это официальный дилерский сканер, рекомендуемый АвтоВАЗ. Подходит для всего модельного ряда. Так же для данных автомобилей применяется следующие мульти-марочное оборудование:
Внимание:
Как уже упоминалось выше, старшие модели двенадцатой оснащались диагностическими разъемами с 12 пиновым портом. Для таких вариантов подойдет классический K-Line VAG. Пакеты данных транслируются через К-Line.
Для подключения применяются следующие программы:
Диагностика ошибок и расшифровка
Электронные компоненты опрашиваются через цепочку компьютер-сервисное оборудование-ЭБУ. Диагностическая программа собирает воедино информацию с разных систем и при наличии неполадок выдает OBD коды.
При самодиагностике электронных компонентов, ЭБУ опрашивает органы контроля самостоятельно. Результат выводится в виде кодов на табло. Если компонент не отвечает ил его значения не совпадают с калибровочными, ЭСУД фиксирует ошибку в этом месте.
Принцип работы контролёра (ЭБУ)
Электронный блок управления двигателем в течении всей работы двигателя получает, обрабатывает, управляет системами и датчиками, влияющими как на работу двигателя, так и на второстепенные элементы двигателя (система выхлопа). Контролёр пользуется данными следующих датчиков:
- (Датчик положения коленчатого вала).
- (Датчик моментального расхода воздуха).
- (Датчик температуры охлаждающей жидкости).
- (Датчик положения дроссельной заслонки).
- (Датчик кислорода).
- (Датчик детонации).
- (Датчик скорости).
- И другие датчики.
Получая данный от источников, перечисленных выше, ЭБУ контролирует работу следующих датчиков и систем:
- (Топливный насос, регулятор давления, форсунки).
- Система зажигания.
- (ДХХ,РХХ).
- Адсорбер.
- Вентилятор радиатора.
- Система само диагностирования.
Так же, ЭСУД (эбу) имеет три вида памяти:
- Программируемое постоянное запоминающее устройство (ППЗУ); Содержит в себе так называемую прошивку, т.е. программу, в которую забиты основные показания калибровок, алгоритм управления двигателем. Данная память не стирается при отключении питании и является постоянной. Поддаются перепрограммированию, .
- Оперативное запоминающее устройство (ОЗУ); Представляет собой временную память, в которой хранятся ошибки системы, измеряемые параметры. Данная память стирается при отключении питания.
- Электрически репрограммируемое запоминающее устройство (ЭРПЗУ). Данный тип памяти, можно сказать, является охраной автомобиля. В ней временно хранятся коды и пароли противоугонной системы автомобиля. Иммобилайзер и ЭРПЗУ сравниваются данными, после чего возможен пуск двигателя.
Особенности, диагностика и замена элементов систем впрыска на ВАЗовских авто
Ниже рассмотрим основные контроллеры!
Холла
Есть несколько вариантов, как можно проверить датчик Холла ВАЗ:
- Использовать заведомо рабочее устройство для диагностики и установить его вместо штатного. Если после замены проблемы в работе двигателя прекратились, это говорит о неисправности регулятора.
- С помощью тестера произвести диагностику напряжения контроллера на его выводах. При нормальной работоспособности устройства напряжение должно составить от 0.4 до 11 вольт.
Процедура замены выполняется следующим образом (процесс описан на примере модели 2107):
- Сначала производится демонтаж распределительного устройства, выкручивается его крышка.
- Затем осуществляется демонтаж бегунка, для этого его надо потянуть немного вверх.
- Демонтируйте крышка и выкручивается болт, который фиксирует штекер.
- Также надо будет выкрутить болты, которые фиксируют пластину контроллера. После этого откручиваются винты, которые крепят вакуум-корректор.
- Далее, осуществляется демонтаж стопорного кольца, извлекается тяга вместе с самим корректором.
- Для отсоединения проводов необходимо будет раздвинуть зажимы.
- Вытаскивается опорная пластина, после чего откручиваются несколько болтов и производителя демонтаж контроллера. Производится монтаж нового контроллера, сборка осуществляется в обратной последовательности (автор видео — Андрей Грязнов).
Скорости
О выходе из строя данного регулятора могут сообщить такие симптомы:
- на холостом ходу обороты силового агрегата плавают, если водитель не жмет на газ, это может привесит к произвольному отключению мотора;
- показания стрелки спидометра плавают, устройство может в целом не работать;
- увеличился расход горючего;
- мощность силового агрегата снизилась.
Сам контроллер расположен на коробке передач . Для его замены нужно будет только поднять колесо на домкрат, отсоединить провода питания и демонтировать регулятор.
Уровня топлива
Датчик уровня топлива ВАЗ или ДУТ используется для обозначения оставшегося объема бензина в топливном баке. Причем сам датчик уровня топлива установлен в одном корпусе с бензонасосом. При его неисправности показания на приборной панели могут быть неточными.
Замена делается так (на примере модели 2110):
- Отключается аккумулятор, снимается заднее сиденье автомобиля. С помощью крестообразной отвертки выкручиваются болты, которые фиксируют люк бензонасоса, снимается крышка.
- После этого от разъема отсоединяются все подводящие к нему провода. Также необходимо отсоединить и все патрубки, которые подводятся к топливному насосу.
- Затем откручиваются гайки, фиксирующие прижимное кольцо. Если гайки заржавели, перед откручиванием обработайте их жидкостью WD-40.
- Сделав это, выкрутите болты, которые фиксируют непосредственно сам датчик уровня топлива. Из кожуха насоса вытаскиваются направляющие, а крепления при этом нужно отогнуть отверткой.
- На завершающем этапе производится демонтаж крышки, после этого вы сможете получить доступ к ДУТ. Контроллер меняется, сборка насоса и остальных элементов осуществляется в обратном снятию порядке.
Холостого хода
Если датчик холостого хода на ВАЗ выходит из строя, это чревато такими проблемами:
- плавающие обороты, в частности, при включении дополнительных потребителей напряжения — оптики, отопителя, аудиосистемы и т.д.;
- двигатель начнет троить;
- при активации центральной передачи мотор может заглохнуть;
- в некоторых случаях выход из строя РХХ может привести к вибрациям кузова;
- появление на приборной панели индикатора Check, однако загорается он не во всех случаях.
Видео «Вкратце о замене датчика распредвала на ВАЗе»
Подробнее о том, где расположен датчик распредвала ВАЗ и как произвести его замену в гаражных условиях, вы можете узнать из ролика ниже (автор видео — Vitashka Ronin).
ВАЗ-десятка, VS 5.1 (Россия-83), 8кл. При просмотре каналов АЦП обнаружил, что Uбрт=0.8v. Я так понимаю, что АЦП (Аналого-цифровой преобразователь) — это микросхема (или несколько микросхем) в контроллере, служащий для преобразования аналоговых сигналов с датчиков в цифровые. И естественно этот АЦП получает питание от бортовой сети. Подскажите, это питание заводится непосредственно с какой то ножки контроллера и или через свой источник стабилизированного питания в контроллере? Оказалось, что этой схемы у меня нет. Машина ездит, ХХ чуть повышен (около 860 — 950 об), СО и СН в норме, расход тоже небольшой, иногда при разгоне как будто кто её держит. Приехала с ошибкой «Низкий уровень сигнала ДПДЗ» Датчик проверил осциллографом — без замечаний. После снятия ошибка не появлялась. АЦП ДМРВ при вкл. зажигании=1.07в. Напряжение на «земле» ДМРВ=0.7в, при подаче на неё массы — выход не меняется. Для очистки совести менял ДПДЗ, ДМРВ, РХХ на исправные, прочистил Др. Патрубок — обороты ХХ остаются завышены, сигналы АЦП — те же. ХХ ровный. Пользовался сканером F-16, программой «Автоас-Скан» USB-осциллографом и мультиметром. Меня больше всего интересует уровень напряжения АЦП Uбрт, как может всё работать при таком низком напряжении? Где искать? Лезть в контроллер? Но кроме как продуть от пыли и посмотреть на предмет целостности дорожек и деталей — больше я там сделать ничего не в состоянии. П.С. — в ДПДЗ стояло уплотнение из микропористой резинки, по отпечатку видно, что зажимала, вероятно из за этого была ошибка. Увеличил ножницами внутр. отверстие. Вот картинка с программы коналов АЦП, надеюсь, что резать рамку я уже научился. Присоединённое изображение (нажмите для увеличения)
Типовые параметры работы инжекторных двигателей ВАЗ.
Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них
На что в первую очередь надо обратить внимание при анализе параметров работы двигателя? 1. Двигатель остановлен
1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.
1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.
1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В — нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.
2. Двигатель работает на холостом ходу.
2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.
2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.
2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек
Собственно не так важно само время впрыска, как его коррекция
Типовые параметры работы инжекторных двигателей ВАЗ.
Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них
На что в первую очередь надо обратить внимание при анализе параметров работы двигателя? 1. Двигатель остановлен
1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.
2. Двигатель работает на холостом ходу.
2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.
2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.
2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек
Собственно не так важно само время впрыска, как его коррекция
2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше.
Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.
2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.
2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.
Обороты ХХ, об/мин | 760 – 800 |
Желаемые обороты ХХ, об/мин | 800 |
Время впрыска, мс | 4,1 – 4,4 |
УОЗ, грд.пкв | 11 – 14 |
Массовый расход воздуха, кг/час | 8,5 – 9 |
Желаемый расход воздуха кг/час | 7,5 |
Коррекция времени впрыска от лямбда-зонда | 1,007 – 1,027 |
Положение РХХ, шаг | 32 – 35 |
Интегральная составляющая поз. шаг. двигателя, шаг | 127 |
Коррекция времени впрыска по О2 | 127 – 130 |
Расход топлива | 0,7 – 0,9 |
Характеристики ДВС 21124
Задача увеличить мощность перед конструкторами не стояла, гораздо важнее было повысить экологический стандарт, и избавиться от опасности повреждения клапанов поршнями, если разорвется ремень ГРМ, поэтому схема двигателя осталась неизменной:
- 16 клапанов;
- два верхних распредвала по схеме DOHC;
- ременная передача механизма газораспределения;
- 82 мм диаметр цилиндров.
В результате конструктивных изменений технические характеристики мотора 21124 имеют следующий вид:
Изготовитель | АвтоВАЗ |
Марка ДВС | 21124 |
Годы производства | 2004 – … |
Объем | 1599 см 3 (1,6 л) |
Мощность | 65,5 кВт (89,1 л. с.) |
Момент крутящий | 131 Нм (на 3500 об/мин) |
Вес | 121 кг |
Степень сжатия | 10,3 |
Питание | инжектор |
Тип мотора | рядный |
Впрыск | распределенный с электронным управлением |
Зажигание | модульного типа |
Число цилиндров | 4 |
Местонахождение первого цилиндра | ТВЕ |
Число клапанов на каждом цилиндре | 4 |
Материал ГБЦ | сплав алюминиевый |
Впускной коллектор | объединен с ресивером, полимерный |
Выпускной коллектор | катализатор |
Распредвал | 2 шт., метки на шкивах смещены на 2 градуса |
Материал блока цилиндров | чугун |
Диаметр цилиндра | 82 мм |
Поршни | оригинальные, глубина лунок 5,53 мм |
Коленвал | от 11183 |
Ход поршня | 75,6 мм |
Горючее | АИ-92-98 |
Нормативы экологии | Евро-4 |
Расход топлива | трасса – 6,4 л/100 км смешанный цикл 7,5 л/100 км
город – 8,9 л/100 км |
Расход масла | максимум 0,5 л/1000 км |
Какое масло лить в двигатель по вязкости | 5W-30 и 10W-30 |
Какое масло лучше для двигателя по производителю | Liqui Moly, ЛукОйл, Роснефть, Mannol, Motul |
Масло для 21116 по составу | синтетика, полусинтетика |
Объем масла моторного | 3,5 л |
Температура рабочая | 95° |
Ресурс мотора | заявленный 150000 км реальный 250000 км |
Регулировка клапанов | гидрокомпенсаторы |
Система охлаждения | принудительная, антифриз |
Количество ОЖ | 7,8 л |
Помпа | ТЗА |
Свечи на 21124 | BCPR6ES от NGK или отечественные АУ17ДВРМ |
Зазор между электродами свечи | 1,1 мм |
Ремень ГРМ | Dyco, ширина 22 мм, ресурс 40000 км пробега |
Порядок работы цилиндров | 1-3-4-2 |
Воздушный фильтр | Nitto, Knecht, Fram, WIX, Hengst |
Масляный фильтр | номер по каталогу 90915-10001 замена 90915-10003, с обратным клапаном |
Маховик | от 2110 |
Болты крепления маховика | коробка МТ – М10х1,25 мм, длина 26 мм, проточка 11 мм коробка АТ – М10х1,25 мм, длина 26 мм без проточки |
Маслосъемные колпачки | код 90913-02090 впускные светлые код 90913-02088 выпускные темные |
Компрессия | от 12 бар, разница в соседних цилиндрах максимум 1 бар |
Обороты ХХ | 800 – 850 мин -1 |
Усилие затягивания резьбовых соединений | свеча – 31 – 39 Нм маховик – 62 – 87 Нм
болт сцепления – 19 – 30 Нм крышка подшипника – 68 – 84 Нм (коренной) и 43 – 53 (шатунный) головка цилиндров – три стадии 20 Нм, 69 – 85 Нм + 90° + 90° |
Наличие нескольких ремонтных размеров гильз цилиндров и поршней способствует тому, что капитальный ремонт можно произвести несколько раз без замены блока цилиндров. То есть, в соответствии с принятой в двигателестроении терминологией мотор 21124 условно относится к «миллионникам», а в мануал заложено, не только описание параметров, но и пошаговый ремонт отдельных узлов.
Распиновка
Распиновка датчика распредвала ваз 2112 16 клапанов Знание распиновки может потребоваться в случае, если автолюбитель желает изготовить переходник для компьютерной диагностики своими руками либо же если вам нужно подключиться без него. Специалисты рекомендуют покупать уже готовые устройства без необходимости самостоятельного изготовления штекера. Однако если у вас нет такой возможности, а диагностику нужно провести срочно, рассмотрим два основных варианта распиновки, использующиеся на автомобилях ВАЗ различных годов выпуска. До 2002 года на продукции АвтоВАЗ использовался следующий вариант распиновки:
- 4-й и 5-й контакты – выходы GND.
- 16-й контакт – +12 В (линия питания).
- 7-й контакт – непосредственно диагностическая линия.
С 2002 года схема распиновки существенно изменилась. Теперь она имеет следующий вид:
- Контакт H – +12 В (линия питания).
- Контакт G – +12 В для бензонасоса.
- Контакт A – GND-выход.
- Контакт M – линия диагностики.
Для данной схемы необходимо указать одно важное замечание. Если вы подключаете разъем без колодки, а напрямик, в качестве источника электричества рекомендуется использовать заряд от прикуривателя. Особенность такой распиновки заключается в том, что контакт H не всегда разведен в автомобиле
Использование G также не рекомендуется, поскольку подается высокочастотный ток. Это может негативно сказаться на адаптере, вплоть до того, что вообще сжечь его. Вместе с тем случаи сжигания разъема от бензонасоса являются достаточно редкими. Поэтому при желании вы вполне можете воспользоваться и таким вариантом
Особенность такой распиновки заключается в том, что контакт H не всегда разведен в автомобиле. Использование G также не рекомендуется, поскольку подается высокочастотный ток. Это может негативно сказаться на адаптере, вплоть до того, что вообще сжечь его. Вместе с тем случаи сжигания разъема от бензонасоса являются достаточно редкими. Поэтому при желании вы вполне можете воспользоваться и таким вариантом.
Как видим, распиновка на автомобилях ВАЗ различного возраста порой сильно отличается. Поэтому мы советуем вам заглянуть в техпаспорт вашего авто и уточнить, какого оно года выпуска. На более старых автомобилях вы не найдете новой схемы распиновки, поскольку ее еще не существовало, а на новых транспортных средствах старый вариант уже не использовался.
Описание регистров ADS1115
АЦП имеет всего 4 внутренних регистра, все регистры 16-ти битные, соответственно для каждой сессии записи/чтения по интерфейсу I2C передается 2 информационных байта (кроме байта адреса регистра). Описание регистров приведено ниже в таблице:
Адрес | Название | Описание регистра |
0x00 | Conversion register | Регистр хранения результата преобразования |
0x01 | Config register | Конфигурационный регистр |
0x02 | Lo_thresh register | Регистр уставки, минимальное значение |
0x03 | Hi_thresh register | Регистр уставки, максимальное значение |
С помощью конфигурационного регистра осуществляется управление АЦП, описание регистра приведено ниже в таблице:
Бит | Название бита | Значение бита | Описание |
15 | OS. Бит определяет состояние устройства и может быть записан только в режиме пониженного потребления | Для записи | |
Нет эффекта | |||
1 | Начать преобразование, для режима одиночного преобразования (пониженное потребление) | ||
Для чтения | |||
Выполняется преобразование | |||
1 | Преобразование закончено | ||
14-12 | MUX. Настройка мультиплексора | 000 | AINp=AIN0 и AINn=AIN1 (умолч) |
001 | AINp=AIN0 и AINn=AIN3 | ||
010 | AINp=AIN1 и AINn=AIN3 | ||
011 | AINp=AIN2 и AINn=AIN3 | ||
100 | AINp=AIN0 и AINn=GND | ||
101 | AINp=AIN1 и AINn=GND | ||
110 | AINp=AIN2 и AINn=GND | ||
111 | AINp=AIN3 и AINn=GND | ||
11-9 | PGA. Коэффициент усиления усилителя | 000 | FS=±6,144 В |
001 | FS=±4,096 В | ||
010 | FS=±2,048 В (умолч.) | ||
011 | FS=±1,024 В | ||
100 | FS=±0,512 В | ||
101 | FS =±0,256 В | ||
110 | FS =±0,256 В | ||
111 | FS =±0,256 В | ||
8 | MODE. Режим работы | Непрерывное преобразование | |
1 | Одиночное преобразование, режим пониженного потребления (умолч) | ||
7-5 | DR. Частота дискретизации | 000 | 8 ГЦ |
001 | 16 ГЦ | ||
010 | 32 ГЦ | ||
011 | 64 ГЦ | ||
100 | 128 ГЦ (умолч) | ||
101 | 250 ГЦ | ||
110 | 475 ГЦ | ||
111 | 860 ГЦ | ||
4 | COMP_MODE. Тип компаратора | Компаратор с гистерезисом (умолч) | |
1 | Компаратор без гистерезиса | ||
3 | COMP_POL. Полярность компаратора | Низкий активный уровень (умолч) | |
1 | Высокий активный уровень | ||
2 | COMP_LAT. Режим компаратора | Компаратор без “защелки” (умолч) | |
1 | Компаратор с “защелкой” | ||
1-0 | COMP_QUE. Управление компаратором | 00 | Установка сигнала на выходе после одного преобразования |
01 | Установка сигнала на выходе после двух преобразований | ||
10 | Установка сигнала на выходе после четырех преобразований | ||
11 | Компаратор выключен (умолч) |
Основные параметры диагностики
Какие параметры при диагностике важны? Ответ прост — ВСЕ параметры важны!
Нет, ну конечно, есть основные параметры, на которые стоит обратить внимание в первую очередь:
Барометрическое давление — оно должно быть равно атмосферному давлению в Вашем регионе в данный период времени. Обычно это 98-100 кПа.
Давление во впускном коллекторе — на холостом ходу прогретого двигателя без нагрузки (выкл. потребители и кондиционер) оно должно составлять 30-33 кПа. Если оно завышено, то это сразу не означает, что это подсос воздуха, как многие думают. Почему? Читайте об этом на странице Высокое давление во впускном коллекторе
Накопленная коррекция топливоподачи — должна быть максимально близкой к нулю. В идеале равна нулю. Если это не так, то необходимо искать причину. Вот самая частая причина отрицательной коррекции
Сигнал первого датчика кислорода — в идеале должен иметь пилообразную форму на холостом ходу. При помощи него можно многое узнать о подаче топлива и о запорных свойствах форсунок. Более подробно о нем на странице Лямбда зонд
Сигнал второго датчика кислорода — его сигнал должен иметь практически ровную линию. Если он повторяет сигнал первого датчика кислорода, то это означает, что катализатор работает с низким КПД, либо вовсе отсутствует.
Положение РХХ (Шаги) — должны обычно составлять 25 — 35 шагов. Если они завышены, значит пора почистить регулятор холостого хода, либо заменить его. Если шаги сильно занижены, значит скорее всего имеется подсос воздуха во впускной коллектор.
Длительность импульса впрыска — должна составлять 2.3 — 3 мсек. на холостом ходу прогретого двигателя без нагрузки (выключены потребители и кондиционер).
Положение ДЗ — на разных авто этот параметр имеет различные значения. Даже у Лачетти этот параметр различается на хх:
Температура охлаждающей жидкости — на незапущенном двигателе должна быть близка к температуре окружающей среды и при прогреве повышаться плавно. Если на улице минус 10 градусов, а датчик показывает плюс двадцать, тогда однозначно он требует замены либо проверки его проводки.
Температура воздуха на впуске — аналогично датчику температуры ОЖ.
УОЗ — на разных системах он будет разным. Допустим, на Лачетти 1.4/1.6 — это 3-12 градусов на хх. В зависимости от переключателя октанового числа и применяемого топлива. А на лачетти 1.8 — это около нуля градусов на хх. Главное, чтобы УОЗ был максимально стабильным и не имел резких скачков на холостом ходу.
Вот эти параметры очень важны и на них стоит обращать внимание в первую очередь. НО!. Допустим, занижено напряжение ДПДЗ или завышено напряжение датчика клапана ЕГР, или нет сигнала от выключателя холостого хода, то все эти вышеперечисленные важные параметры не дают полной картины о происходящем в системе управления двигателем
Допустим, занижено напряжение ДПДЗ или завышено напряжение датчика клапана ЕГР, или нет сигнала от выключателя холостого хода, то все эти вышеперечисленные важные параметры не дают полной картины о происходящем в системе управления двигателем.
Поэтому что? Правильно! Все параметры важны!