Чем заменить сгоревший резистор

Содержание / Contents

  • 1 Вскрытие покажет. Потенциометр СПЗ-30 изнутри
  • 2 Немного про СП-1

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя. У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что? Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.

Размеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 25,4.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры корпуса и мощность smd резисторов наиболее часто используемых на практике, а именно — smd резисторы 0201, 0420, 0603, 0805, 1206, 1210, 1218, 2010 и 2512:

Следовательно исходя из приведенной выше таблицы по размеру корпуса можно определить мощность smd резистора.

Алгоритм поиска неисправности

Визуальный осмотр

Любой ремонт начинается с внешнего осмотра платы

Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов. Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали

Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке

Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.

Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.

Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:

  1. Обрыв.
  2. Короткое замыкание.
  3. Несоответствие номиналу.

Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:

Проверка резистора на обрыв

Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.

Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв

Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром. Не ленитесь и лучше выпаяйте подозрительную деталь

Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено

Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.

Проверка короткого замыкания

Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.

Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:

  1. Измерить омметром, прозвонкой или другим прибором участок цепи.
  2. Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
  3. Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
  4. Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
  5. Проверить результаты работы на наличие КЗ.

Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:

Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.

На видео ниже наглядно показывается, как проверить резистор мультиметром:

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».

    Рис. 5. Установка режима (1) и подключение щупов (2 и 3)

  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» – черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы

Re: RCD-Y95 — сгорел резистор

Ср ноя 29, 2017 23:37:50

Ты, сынок сказал, кто же еще?

Мне интересно другое, ты сейчас придуриваешься или правда так думаешь, что у взрослого дядьки который учился паять когда тебя не было в проекте, нет нормальной паяльной станции с хорошим паяльником и феном, не лежит в столе кусок сплава Вуда и десяток разных сменных жал, что не видел он роликов какправильнопаятьпионЭру Вот ты пришел на форум, где в общем то много хороших, квалифицированных специалистов, и ты правда считаешь, что паяют тут строительным феном, а паяло в виде колуна на газу греют?

Ну да мерим цешками, паяем колуном, а особопродвинутые строительным феном. Ну нахера ты тогда за помощью сюда обратился такой «продвинутый»?

Так вот — если я сказал, что заебался с кнопкой, значит тебе такую не заменить в ближайшие годы не чем, не феном не паялом, не Вудом, не ИК станцией. Те детали которые меняют напоказ в ютуповских роликах, и я и другие участники сего форума меняют за пару минут между делом. Поверь уж на слово, что это так. Поэтому — читай книжки по схемотехнике и слушайся старших, будь короче прилежным мальчиком . и тогда . со временем у тебя тоже получится как минимум ремонтировать поюзанные мафоны.

голоса

Рейтинг статьи

↑ Немного про СП-1

Недавно попало в руки одно устройство, где для регулировки громкости использовался великий и ужасный… СП-1. И та же самая проблема с хрипом треском и пропаданием звука

А значит, появилась возможность рассказать об одном его отличии от СП3, которое очень даже может служить причиной неполадок, и на которое можно сразу не обратить внимание. В магнитофоне, который у меня был в школьные времена, несколько раз регулятор громкости перебирал, пока случайно не наткнулся

Кстати разборка происходит точно так же, как и в предыдущем примере. Но в отличии от СП3, у СП-1 неподвижный контакт, приклёпанный к центральному выводу не пружинный, а плоский, кольцеобразный. Этот самый контакт спокойно себе лежит в предназначенном для него пазу. И если его специально не пошевелить, то можно и не заметить что он иногда свободно болтается на заклёпке.

И контакт этот между выводом и движком переменника появляется и пропадает по собственному желанию. Не исключено, что встречаются и СП3 с болтающимся на заклёпке центральным контактом, но мне такие пока не попадались.

Для устранения неисправности, как многие догадались, достаточно пропаять это соединение. Для большей надёжности можно пропаять и со стороны вывода, хотя чаще всего это не требуется. Кстати, угольный слой очень даже неплохо сохранился для переменного резистора с металлическими щётками из устройства конца 70-х годов.

Вот такие достаточно простые рекомендации по возвращению к активной жизни захрипевших переменных резисторов. Правда, здесь я рассмотрел только один тип, но повторюсь — другие отличаются только способом разборки-сборки. Составные части и места возможного появления неисправностей одинаковы.

P.S.

Бывает, можно купить новый переменник с описанным дефектом. Неизвестно ведь сколько, где и в каких условиях он хранился до этого. Даже если и выглядит как новый. На всякий случай, перед установкой в изделие, стоит проделать вышеописанные операции. Анекдот про «доработать напильником» не просто так придумали. Я сам несколько раз сталкивался с тем, что «свежий» регулятор «шуршит» при приближении движка к крайним точкам. Обычно после чистки и смазки «болезнь» пропадает. Недавно поставил свежекупленые малогабаритные СПЗ-40 в темброблок электрогитары, и сразу же пришлось снова снимать все четыре резистора и проводить те же процедуры. С тех пор работает второй год без нареканий.

Что может пригодиться

Резистор – надежная деталь. Обычно он не выходит из строя, если прибор эксплуатировался правильно: не подвергался воздействию жары, влаги, других неприятных для схем условий. Для экономии времени тестирование элементов схемы начинают не с определенного резистора, так как он редко выходит из строя, а с других радиодеталей. Например, чаще перегорают полупроводники или индуктивности, поэтому начинать проверку рекомендуется с них. Это поможет сэкономить время.

Порядка, в котором следует проверять те или иные схемы, не существует. Вы можете начинать с любого элемента, который кажется вам подозрительным или находится ближе. Резисторы могут иметь определенные отклонения от номинала. Их требуется знать: обычно эти параметры указываются заводом-изготовителем. Чем меньше отклонения, тем точнее сделана деталь, значит, ее стоимость будет выше.

Несмотря на то, что проверить резистор мультиметром достаточно легко, следует знать следующее:

  • перед началом работы с прибором внимательно изучите инструкцию к нему, производители часто совершенствуют мультиметры, меняют их функционал и управление;
  • узнайте технические характеристики мультиметра;
  • проверьте, правильно ли выставлены настройки;
  • проверьте, в каком состоянии батарейки.

Реальная величина сопротивления элемента может значительно отличаться от заявленной, так, например, допустимое отклонение в большую или меньшую сторону может составлять до 10%.

Для того чтобы узнать исходные данные детали, которая проверяется, рекомендуют воспользоваться схемой, прилагаемой к прибору. Если показания мультиметра сильно отличаются от положенного для проверяемого резистора, то, скорее всего, перед вами либо несправный прибор, либо резистор, сопротивление которого является крайней формой отклонения от нормы. Сопротивление резистора наносят на его корпус. Если на нем написано 150 Ом, а ваш мультиметр показывает 165, не стоит пугаться. Это нормальное расхождение данных, так как характеристика имеет допустимые отклонения.

SMD резисторы

SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов  – SMD резистор.

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Как проверить переменный резистор и потенциометр

Чтобы понять, в чем заключается проверка потенциометра, давайте рассмотрим его структуру. Переменный резистор от потенциометра отличается тем, что первый регулируется отверткой, а второй рукояткой.

Потенциометр – это деталь с тремя ножками. Он состоит из ползунка и резистивного слоя. Ползунок скользит по резистивному слою. Крайние ножки – это концы резистивного слоя, а средняя соединена с ползунком.

Чтобы узнать полное сопротивление потенциометра, нужно замерить сопротивление между крайними ножками. А если проверить сопротивление между одной из крайних ножек и центральной – вы узнаете текущее сопротивление на движке относительно одного из краёв.

Но самая частая неисправность такого резистора — это не отгорание концов, а износ резистивного слоя. Из-за этого сопротивление изменяется неправильно, возможна потеря контакта в определенных участках, тогда сопротивление подскакивает до бесконечности (разрыв цепи). Когда движок занимает то положение, в котором контакт ползунка с покрытием вновь появляется – сопротивление вновь становится «правильным». Эту проблему вы могли замечать, когда регулировали громкость на старых колонках или усилителе. Проявляется проблема в том, что при вращении ручки периодически в колонках раздаются щелчки или громкие стуки.

Вообще проверку плавности хода потенциометра нагляднее проводить аналоговым мультиметром со стрелкой, т.к. на цифровом экране вы просто можете не заметить дефекта.

Потенциометры могут быть сдвоенными, иногда их называют «стерео потенциометры», тогда у них 6 выводов, логика проверки такая же.

На видео ниже наглядно показывается, как проверить потенциометр мультиметром:

Причины выхода из строя резисторов

Часто неисправности детали случаются из-за короткого замыкания в электроцепи автомобиля: в этот момент сопротивление обмоток в электромоторе вентилятора становится ниже критического.Но есть и другая причина. Если лопасти крыльчатки печки потеряли смазку или сильно загрязнены, автокомпонент туго крутится. Поэтому резистор быстро выйдет из строя.

Дополнительный отопитель в салоне автомобиля: что это, зачем нужен, устройство, как работает

Причины выхода из строя резисторов

Чтобы сберечь рабочий ресурс запчасти, не держите печку очень долго на первом положении, периодически переводите отопитель на более высокие скорости. Определить, что виновником плохой работы салонного отопителя является именно реостат, несложно: подключите к проводам питания элемента мультиметр. Другой признак неисправного резистора: печка работает только в крайнем, четвертом, положении.

Добраться до прибора в некоторых моделях машин можно через капот, где деталь располагается под пластиковой накладкой («жабо»). В других авто элемент демонтируют и меняют из салона.

Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п

Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику

2.1. Номинальное сопротивление.

Номинальное сопротивление

резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются1,0 ;2,2 ;3,3 ;4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0

;2,0 ;3,0 ;5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные

инелинейные : у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А

— Линейный,Б – Логарифмический,В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось пообратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому

(Б) илиобратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной

характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

Как же найти на плате варистор?

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание – на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF – плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат – двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы. После замены варистора остаётся только поставить новый предохранитель и установить плату на место

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Внешняя проверка

Начиная искать неисправность первым делом внимательно просмотрите плату. Для этого вам могут понадобиться лупа или, для плотной установки SMD компонентов, микроскоп.

Рассматривая схему важно уделить внимание зонам в которых цвет не естественный: желтые, черные, с сажей или нагаром участки. Детали механического повреждения: разрыв или отсоединение говорят не только про локализацию поломки, но и возможные проблемы в обвязки компонентов

Детали механического повреждения: разрыв или отсоединение говорят не только про локализацию поломки, но и возможные проблемы в обвязки компонентов.

К примеру транзистор, который взорвался может потянуть за собой и несколько компонентов с ним в обвязке.

Помимо визуального анализа, стоит подключить обоняние, не бойтесь понюхать плату, если вдруг вы почувствуете не характерный запах гари или резины, что горела — это дополнительная улика неисправности.

Каждый почерневший элемент проверяйте, из возможных повреждений может быть обрыв, короткое замыкание или несовпадение номинала резистора с платой.

Бывает так, что визуальный анализ покажет очевидную неисправность, без применения различных приборов. Пример на фото:

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Принцип работы

Реостат любого вида работает по закону Ома для участка цепи. Прибор для автомобильной печки выглядит, как керамическое тело цилиндрической формы. На деталь намотана обычно стальная проволока с постоянным сечением. Витки спирали изолированы один от другого, так как по всей длине нанесен непроводящий ток материал.

Принцип работы

Над проволочной спиралью вдоль цилиндра двигается ползунок, создающий большее или меньшее сопротивление в электросети. Когда подвижный элемент смещается в одну сторону, увеличивается длина токопроводящего участка. В этот момент растет и величина сопротивления РС. И наоборот, когда ползунок уходит в противоположную сторону, сопротивление укороченного участка падает.

Как проверить диодный мост

Иногда имеется ситуация, когда нужно проверить на работоспособность диодный мост. Он имеет вид сборки, состоящей из четырех полупроводников. Они соединяются таким образом, чтобы переменное напряжение, подаваемое к двум из четырех спаянных элементов, переходило в постоянное. Последнее снимается с двух других выводов. В результате происходит выпрямление переменного напряжения и перевод его в постоянное.

По сути, принцип проверки в этой ситуации остается таким же, как было описано выше. Единственной особенностью тут является определение, к какому выводу будет подключен измерительный прибор. Здесь имеется четыре варианта подключения, которые следует «прозвонить»:

  • выводы 1 – 2;
  • выводы 2 – 3;
  • выводы 1 – 4;
  • выводы 4 – 3;

При проверке диодов (обычного и Шоттки) с помощью мультиметра, вы получите определенный результат. Теперь нужно понять, что он может означать. К признакам, которые свидетельствуют в пользу исправности полупроводника, относятся следующие моменты:

  1. При подключении детали электросхемы к прибору последний будет выдавать величину имеющегося прямого напряжения в этом элементе;
  2. Разные типы диодов обладают различным уровнем напряжения, по которому они и отличаются. Например, для германиевых изделий этот параметр составит 0,3-0,7 вольт
  3. При подключении обратным способом (щуп прибора к аноду изделия) будет регистрироваться ноль.

Проверив каждый выход, вы получите четыре результата. Полученные показатели следует оценивать по тому же принципу, что и для отдельного полупроводника.

Обратная проверка

Если эти два показателя соблюдаются, то полупроводник работает адекватно и причина поломки не в нем. А вот если хотя бы одни из параметров не соответствует, то элемент признается негодным и подлежит замене. Кроме этого следует учитывать, что возможна не поломка, а «утечка». Этот неприятный дефект может проявиться при длительной эксплуатации прибора или некачественной сборке.

При наличии короткого замыкания или утечки, полученное сопротивление будет довольно низким. Причем вывод необходимо делать, основываясь на виде полупроводника. Для германиевых элементов этот показатель в данной ситуации будет иметь диапазон от 100 килоом до 1 мегаом, для кремниевых — тысячи мегаом. Для выпрямительных полупроводников данный показатель будет в разы больше.

Как видим, своими силами не так уж и сложно провести оценку работоспособности полупроводников в любом электроприборе. Вышеописанный принцип подходит для проверки диодных элементов различных типов и видов. Главное в этой ситуации правильно подключить измерительный прибор к полупроводнику и проанализировать полученные результаты.

Два диода Шоттки.

Определяем номинал резистора

У советских сопротивлений номинал был указан буквенно-цифровым способом. У современных выводных резисторах номинал зашифрован цветовыми полосами. Чтобы заменить сопротивление после проверки на исправность, нужно расшифровать маркировку сгоревшего.

Для определения маркировки по цветным полоскам есть масса бесплатных приложений на андроид. Раньше использовались таблицы и специальные приспособления.

Можно сделать вот такую шпаргалку для проверки:

Вырезаете цветные круги, прокалываете их по центру и соединяете, самый большой назад, маленький – спереди. Совмещая круги, вы определяете сопротивление элемента.

Кстати на современных керамических резисторах тоже используется явная маркировка с указанием сопротивления и мощности элемента.

Если вести речь об SMD элементах – здесь всё достаточно просто. Допустим маркировка «123»:

12 * 103 = 12000 Ом = 12 кОм

Встречаются и другие маркировки из 1, 2, 3 и 4 символов.

Если деталь сгорела так, что маркировку вообще не видно, стоит попробовать потереть её пальцем или ластиком, если это не помогло – у нас есть три варианта:

  1. Искать на схеме электрической принципиальной.
  2. В некоторых схемах есть несколько одинаковых цепей, в таком случае можно проверить номинал детали на соседнем каскаде. Пример: подтягивающие резисторы на кнопках у микроконтроллеров, ограничительные сопротивления индикаторов.
  3. Замерить сопротивление уцелевшего участка.

О первых двух способах добавить нечего, давайте узнаем, как проверить сопротивление сгоревшего резистора.

Начнем с того, что нужно очистить покрытие детали. После этого включите на мультиметре режим измерения сопротивления, он обычно подписан «Ohm» или «Ω».

Если вам повезло, и отгорел участок непосредственно возле вывода, просто замерьте сопротивление на концах резистивного слоя.

В примере как на фото можно замерить сопротивление резистивного слоя или определить по цвету маркировочных полос, здесь они не покрыты копотью – удачное стечение обстоятельств.

Ну а если вам не повезло и часть резистивного слоя выгорела – остаётся замерить небольшой участок и умножить результат на количество таких участков по всей длине сопротивления. Т.е. на картинке вы видите, что щупы подключаются к кусочку равному 1/5 от общей длины:

Тогда полное сопротивление равно:

Rизмеренное*5=Rноминальное

Такая проверка позволяет получить результат близкий к реальному номиналу сгоревшего элемента. Этот метод подробно описан в видео:

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
M-polo
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: